×

Вы используете устаревший браузер Internet Explorer. Некоторые функции сайта им не поддерживаются.

Рекомендуем установить один из следующих браузеров: Firefox, Opera или Chrome.

Контактная информация

+7-863-218-40-00 доб.200-80
ivdon3@bk.ru

  • Совместное применение модели линейной регрессии и нейронной сети в задаче предсказания тренда котировок криптовалюты Bitcoin

    • Аннотация
    • pdf

    В статье представлен комбинированный подход с использованием методов машинного обучения для выбора эффективной торговой стратегии на валютной бирже. Представленный подход использует расчет углового коэффициента линейной регрессии по индикаторам логарифмической доходности и определение тренда котировок валютной пары BTC/USD в следующем периоде на основе рассчитанного знака коэффициента. Многослойная нейронная сеть прямого распространения выполняет предсказание значения углового коэффициента в следующем десятиминутном периоде для текущего двадцатиминутного периода. В статье предлагается комбинированный подход к использованию методов машинного обучения для выбора эффективной торговой стратегии на валютной бирже. В исследовании представлены результаты практических экспериментов, оценивающих соотношение эффективных и неэффективных стратегий на основе предсказанных значений коэффициентов линейной регрессии.

    Ключевые слова: машинное обучение, нейронная сеть, финансовые временные ряды, предсказание поведения котировок валют, коэффициенты линейной регрессии

    05.13.18 - Математическое моделирование, численные методы и комплексы программ