The article is devoted to the issue of increasing the efficiency of ventilation systems through the use of a new type of air ducts. The main advantage of microperforated textile air ducts is the possibility of supplying fresh air with laminar micro jets to the human breathing zone. The need to adapt the existing methods for calculating the main parameters of jets for the laminar regime is noted. The article presents the results on the development of a mathematical model of a stationary boundary layer for the numerical calculation of the movement and heat and mass transfer of air in a laminar microjet. A discrete analog of the generalized differential equation is derived, on the basis of which a software package is developed that allows one to determine the main parameters of laminar microjets. Verification of the developed software package was carried out, the discrepancy with the known engineering method was less than 3%.
Keywords: mathematical modeling, air exchange, microperforated textile air duct, microperforation, laminar jet, control-volume method, round jet, micro jet