×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Methodological foundations of working with the Modbus TCP protocol with an example in the high-level Python programming language

    This article explores a method for executing data collection systems based on the widely-used industrial protocol, Modbus TCP. In this configuration, the server is a program emulating the Modbus TCP protocol.To implement the client an algorithm and furnished a practical Python programming illustration that employs a lower-level socket library.

    Keywords: python, socket, modbus

  • Road sign detection based on the YOLO neural network model

    This article presents a research study dedicated to the application of the YOLOv8 neural network model for road sign detection. During the study, a model based on YOLOv8 was developed and trained, which successfully detects road signs in real-time. The article also presents the results of experiments in which the YOLOv8 model is compared to other widely used methods for sign detection. The obtained results have practical significance in the field of road traffic safety, offering an innovative approach to automatic road sign detection, which contributes to improving speed control, attentiveness, and reducing accidents on the roads.

    Keywords: machine learning, road signs, convolutional neural networks, image recognition

  • Automated system for issuing bank guarantees based on forecasting the execution of government contracts

    In order to provide information support for decision-making on the issuance of bank guarantees for the execution of a contract in the field of public procurement, it is important for banks to obtain historically accumulated information on the execution of government contracts. This is necessary to assess the possibility of the supplier's performance of his future contract. This can be done by collecting and aggregating information about contracts from the Unified Information System in the field of procurement. The paper proposes to use IT technologies and data analysis to predict the performance of the contract and identify bona fide suppliers. In the work, a selection of primary data on contracts was formed for modeling using the parsing of the FTP server of the Unified Information System in the field of procurement, and the parsed data was preprocessed for use in machine learning models.

    Keywords: information system, data analysis, government contract, data parsing, machine learning