This article is dedicated to developing a method for diagnosing depression using the analysis of user behavior in a video game on the Unity platform. The method involves employing machine learning to train classification models based on data from gaming sessions of users with confirmed diagnoses of depression. As part of the research, users are engaged in playing a video game, during which their in-game behavior is analyzed using specific depression criteria taken from the DSM-5 diagnostic guidelines. Subsequently, this data is used to train and evaluate machine learning models capable of classifying users based on their in-game behavior. Gaming session data is serialized and stored in the Firebase Realtime Database in text format for further use by the classification model. Classification methods such as decision trees, k-nearest neighbors, support vector machines, and random forest methods have been applied. The diagnostic method in the virtual space demonstrates prospects for remote depression diagnosis using video games. Machine learning models trained based on gaming session data show the ability to effectively distinguish users with and without depression, confirming the potential of this approach for early identification of depressive states. Using video games as a diagnostic tool enables a more accessible and engaging approach to detecting mental disorders, which can increase awareness and aid in combating depression in society.
Keywords: videogame, unity, psychiatric diagnosis, depression, machine learning, classification, behavior analysis, in-game behavior, diagnosis, virtual space
This article is devoted to the development of a method for detecting defects on the surface of a product based on anomaly detection methods using a feature extractor based on a convolutional neural network. The method involves the use of machine learning to train classification models based on the obtained features from a layer of a pre-trained U-Net neural network. As part of the study, an autoencoder is trained based on the U-Net model on data that does not contain images of defects. The features obtained from the neural network are classified using classical algorithms for identifying anomalies in the data. This method allows you to localize areas of anomalies in a test data set when only samples without anomalies are available for training. The proposed method not only provides anomaly detection capabilities, but also has high potential for automating quality control processes in various industries, including manufacturing, medicine, and information security. Due to the advantages of unsupervised machine learning models, such as robustness to unknown forms of anomalies, this method can significantly improve the efficiency of quality control and diagnostics, which in turn will reduce costs and increase productivity. It is expected that further research in this area will lead to even more accurate and reliable methods for detecting anomalies, which will contribute to the development of industry and science.
Keywords: U-Net, neural network, classification, anomaly, defect, novelty detection, autoencoder, machine learning, image, product quality, performance