The article is considered the wall stability of a steel cylindrical pre-stressed granary, compressed by the friction forces of grain and shell, taking into consideration the influence of the grain internal pressure, its elastic resistance from the inside and the elastic resistance of the pre-stressed shell outside. In this case, the initial and subcritical deflection of the shell is assumed to be axisymmetric, and the loss of the shell stability occurs with the formation of asymmetric deflection. The given solution of the problem allows to determine the magnitude of the critical efforts taking into consideration the influence of the grain internal pressure, its elastic repulsion, the magnitude of the initial deflections and the ratio of shell dimensions.
Keywords: stability calculation, wall stability, prestressing, internal lateral pressure, elastic rebound
The well-known theoretical and experimental investigations of the stability of thin-sheeted shells of cylindrical storages are analyzed in the article. It was investigated the following problems concerning the stability of the wall of a spiral-bound granary and a cylindrical granary with a smooth wall, compressed by friction forces of the grain and load from the roof; stability of the wall of the cylindrical shell of containers for liquid and bulk materials when creating a prestress in them.
Keywords: stability calculation, wall stability, prestressing, internal lateral pressure, elastic rebound, cylindrical granary, grain friction force, load from the roof
The article is considered the wall stability of a steel cylindrical pre-stressed granary, compressed by the friction forces of grain and shell, taking into consideration the influence of the grain internal pressure, its elastic resistance from the inside and the elastic resistance of the pre-stressed shell outside. In this case, the initial and subcritical deflection of the shell is assumed to be axisymmetric, and the loss of the shell stability occurs with the formation of asymmetric deflection. The given solution of the problem allows to determine the magnitude of the critical efforts taking into consideration the influence of the grain internal pressure, its elastic repulsion, the magnitude of the initial deflections and the ratio of shell dimensions.
Keywords: stability calculation, wall stability, prestressing, internal lateral pressure, elastic rebound, cylindrical granary, grain friction force, load from the roof
It was considered the method of calculating the stability of steel spiral-bound silo wall under axisymmetric buckling under the influence of internal grain pressure is considered. The silo construction consists of short, cylindrical shells smoothed through the folds and having initial curvatures directed inwards. It was obtained the solution for determining the critical stresses of short shells.
Keywords: steel silo, spiral-bound silo wall, ax symmetric buckling, initial curvature of the shell, internal lateral pressure, elastic repelling of grain, frictional force of grain
It was considered the method of calculating the stability of steel spiral-bound silo wall under axisymmetric buckling under the influence of internal grain pressure is considered. The silo construction consists of short, cylindrical shells smoothed through the folds and having initial curvatures directed outwards. It was obtained the solution for determining the critical stresses of short shells.
Keywords: steel silo, spiral-bound silo wall, ax symmetric buckling, initial curvature of the shell, internal lateral pressure, elastic repelling of grain, frictional force of grain