The article studies the possibility of using the continuous form of the maximum consistency method when constructing regression models to calculate the forecast values of the air transport passenger turnover indicator in the Russian Federation. The method under study is compared with classical methods of regression analysis - least squares and moduli. To assess the predictive properties of the methods, the average relative forecast error and the continuous form of the criterion for the consistency of behavior between the calculated and actual values of the dependent variable are used. As a result of the analysis, a conclusion was made about the possibility of using the method under study to solve forecast problems.
Keywords: least squares method, continuous form of the maximum consistency method, modeling, passenger turnover, air transport, adequacy criteria
The paper presents a brief overview of publications describing the experience of using mathematical modeling methods to solve various problems. A multivariate piecewise linear regression model of a steel company was built using the continuous form of the maximum consistency method. To assess the adequacy of the model, the following criteria were used: average relative error of approximation, continuous criterion of consistency of behavior, sum of modules of approximation errors. It is concluded that the resulting model has sufficient accuracy and can be used for forecasting.
Keywords: mathematical modeling, piecewise linear regression, least modulus method, continuous form of maximum consistency method, steel company