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Extrapolation is the fact of predicting beyond the observation range. This 

terminology is used frequently in path planning tasks. This is due to the 

importance of “early alarm” factor in avoiding surprising changes in an 

unknown place. 

This paper offers an improvement for machine vision based tracking algorithm 

using NARX neural network. This is achieved by predicting the next position of 

a mobile agent based on previous movement described by time-series functions. 

The algorithm remains passive and does not interfere with the flight path until 

detection of multiple agent-candidates, when the tracking algorithm is not able 

to identify or locate the assigned agent. Meanwhile the NARX training set are 

updated along which each successful tracking cycle. This process is done to 

eliminate the overfitting problem of BPTT training. 

This paper is concerned about predicting the next position of a mobile agent 

tracked by a miniature rotorcraft, a quadrotor. The agent is recognized by its 

color using HSV algorithm [1]. Although being a straightforward method 

mathematically, the HSV based machine vision recognition and tracking is 

directly influenced by the type and nature of light in the operating field. Per 

instance, a blue car is recognized differently with reference to the time of 

observation. This is due by the light temperature. Figure.1. shows set of crayons 

under different color temperature.  



 

Figure 1. Influence of light temperature on observed object 

The change in the color of the observed agent can lead to its unrecognition. The 

same can happen if in the field of tracking appears another identical object. This 

fact will cause uncertainty for the tracking algorithm and the task may fail. 

Another reason that focuses on the importance of position prediction in tracking 

tasks is the possibility that the agent can disappear for a moment due to 

environmental circumstances, such as trees, facades, buildings and so on [2].  

Description of NARX 

As path generator is possibly dealing with dynamic and changing surrounding 

atmosphere [3], it is of a great importance to design adaptable system able to 

track, define or detect agents based on the flight mission. Uncertainties as 

described earlier can be caused from different sources: optical noises, 

homogeneity of agents, light sources color temperature etc…To overcome these 

uncertainties and inconvenience of machine vision based tracking algorithms, 

we suggest to use a nonlinear autoregressive exogenous neural network. NARX 

is a model of nonlinear neural network, which can accept dynamic inputs 

represented by time-series sets. This is the main advantage of the NARX over 

feed forward Back propagation neural networks [2, 4]. NARX can deal also 

with discrete and continuous inputs [5]. 

NARX as any recurrent neural network can be trained using one of the 

following algorithms 



− Backpropagation through time or BPTT. It is similar to Backpropagation 

training held for feed forward neural networks. It is widely used in the 

literature [4, 6]; 

− Real-time recurrent learning or RTRL is the straight mathematically but 

requires computation power and time; 

− Algorithms based on extended Kalman filters or EKF. This method has 

shown success in prediction but it puts constraints on the dynamics of 

the quadrotor [7]. 

The aim of the prediction using NARX is to be passive mostly during successful 

recognition of the agent [8]. During this time NARX can be trained by the 

updated positions of the mobile agent represented by data pairs (input- Output). 

This vector is described in (1)    
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Where  ݑሺ݊ሻ െ is the input set, ݀ሺ݊ሻ െ is the output set, n represents the time, K 

is the number of perceptron in the input layer, L is the number of perceptron is 

the output layer.  

The training of the NARX is achieved using BPTT because the output of the 

network is not fed into the tracking algorithm. As discussed earlier, the training 

is done passively following three steps. 

1- The first step consists of calculating and discovering the status of the 

activation functions ݔሺ݊ሻ of each perceptron starting from ݑሺ݊ሻ,  ݔሺ݊ െ

1ሻ and ݕሺ݊ െ 1ሻ or the activation of the output layer if it is fed into a 

certain perceptron; 

 



2- The second step includes the calculation of the backpropagation error of 

each perceptron starting from ݊ ൌ ܶ.  ሺ݊ሻ for each instanceݕ ሺ݊ሻ andݔ ,1.

of time n. this is achieved using the following system of equations (2)  
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(2) 

Where ߜሺܶሻ െ is the backpropagation error of the output perceptron, ߜሺܶሻ െ is 

the backpropagation error of the perceptron located in the hidden layer with 

activation ݔሺܶሻ,  ߜሺ݊ሻ and ߜሺ݊ሻ are consequently the backpropagation error 

of the output perceptron and the one located in the hidden layer in an earlier 

time T layer and ݖሺ݊ሻ െ is the potential of each perceptron. 

3- After finding the backpropagation error, the weights connecting different 

perceptron are calculated using the following system (3) 
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(3) 
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Where ݓ െ is the weight connecting the hidden perceptron, ݓ,  ݓ௨௧ and 

ߛ , are the input, output and feedback weights consequentlyݓ െ is an 

incremental small value that is used during the minimization of the squared 

error. 

Simulation and results 

The NARX structure consists of a single time-series data pairs as was 

described earlier, which contains all the historical data about the movement of 

the agent. The hidden layer includes 10 perceptrons and a single output is 

generated thereafter predicting the possible location of the agent.  The structure 

model of the used NARX is shown is figure.2. 

 

Figure 2. NARX structure model used to predict position 

The training is achieved based on 1000 epochs and was concluded in one 

minute and eight seconds. the result is obtained based on minimal gradient 1-10 .  

It is important to mention that the NARX acts like recurrent neural network 

with embedded memory. It allows the NARX to “remember” the output of the 

perceptrons located in any layer by unfolding the dependencies of the forecasted 

series far longer than a conventional recurrent neural network. This shows an 

impact when forecasting nonlinear, aperiodic and unknown data sets. 



In light of this, the prediction can be tested on different nonlinear functions 

conserving the periodicity, the damping factor and chaotic movement of the 

tracked agent [9].  

 

Figure 3. Simulation results 

Blue curve- real position of the agent, red curve- predicted position 

Simulation results of the predicting the next position of the agent are shown in 

figure.3. It is clear from the curves that the estimation (red) was very close to 

the real values presented in the time series (blue).  

 

Figure 4. Response of the NARX with reference to the time series (black) and 

the backpropagation error (red) over time 



We can figure out that the NARX was successful in estimating the next position 

of the dynamic agent, movement of which was described randomly using 

predesigned time series in Matlab based on magnitude and phase form (input 

output coupled pairs). 

We recommend using the NARX predictor to improve machine vision based 

path-planning algorithms. The results of this paper are used to guide an 

autonomous quadrotor facing a local minimum situation [10] performing local 

planning tasks such as tracking or patrolling tasks.    
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